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Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses

Simin Feng* and Herbert G. Winful†

Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue,
Ann Arbor, Michigan 48109-2122

~Received 15 December 1998!

We present a model of isodiffracting single-cycle and few-cycle ultrashort electromagnetic pulses. The
model is based on exact solutions of the time-dependent paraxial wave equation with space-time coupling
effects included. The spatiotemporal structure of these pulses is characterized by a scaling parameter which
relates off-axis pulse shapes to the axial temporal waveforms. Depending on the spectrum a pulse may
transform itself from a single-cycle pulse to a multicycle pulse along the radial coordinate. This model is also
used to describe recirculating pulses in a curved mirror cavity resonator. The Gouy phase shift contributes an
absolute phase that results in a pulse-to-pulse temporal instability.

PACS number~s!: 42.25.Bs, 42.65.Re, 41.20.Jb, 42.60.Da
ltr
re
a
ve

a
e
t

th
ul

se
th
th
t-
m
th
s
ur
to
g

pa

g

en
av
e
n

lb
t
y
n’

ed
t

of

for
se

also
tion,
lse
ith
asy
cy,
in

also
er-
ab-
tive
ror
ro-
a

tant
la-

f

m
ain

ent

a

I. INTRODUCTION

The propagation of ultrashort laser pulses and other u
wideband electromagnetic pulses is a subject of great cur
interest. In the optical regime pulses as short as 5.4 fs
containing fewer than two cycles of the carrier wa
(wavelength;800 nm) have been generated directly from
mode locked laser@1#. The interest in this wavelength regim
has been in the generation of even shorter pulses, in
characterization of the pulse temporal profile, and in
measurement and control of the absolute phase of the p
At longer wavelengths~e.g., in the terahertz regime! where
single-cycle pulsed beams are routinely generated@2#, there
is interest in optimizing the diffraction properties of the
pulses so that their energy is highly localized around
propagation axis. One scheme proposed for improving
directivity and efficiency of pulsed beams is the ‘‘isodiffrac
ing aperture,’’ which involves source shaping in space-ti
so that all the frequency components in the field have
same collimating distance@3#. Recently a number of author
have pointed out that these isodiffracting pulses are nat
spatiotemporal modes of a curved mirror cavity resona
@4,5#. An understanding of the properties of isodiffractin
pulsed beams is particularly relevant for studying the s
tiotemporal profiles of mode-locked laser pulses.

A number of general characteristics of isodiffractin
pulsed beams have been established by Heyman@6#. These
include the fact that they are the most general eig
wavepacket solutions of the time-dependent paraxial w
equation. Their initial data is propagated along the hyp
bolic ray paths of monochromatic Gaussian beams. Alo
these ray paths the pulse temporal profile undergoes a Hi
transform as the pulse propagates from the near field to
far zone. These features were also noted by us in a stud
exact ‘‘electromagnetic directed energy pulse trai
~EDEPT! solutions of the full Maxwell equations@5,7#.
Other features of the evolution of isodiffracting puls
beams, such as a transformation from multiple cycle
single-cycle temporal profiles along a radial coordinate@8#,
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are characteristics that depend on the particular choice
pulse spectrum.

Our purpose in this paper is to provide detailed results
the spatiotemporal evolution of isodiffracting pulses who
amplitude spectra are of the formvp exp(2vt0). Such spec-
tra are often observed in terahertz experiments and can
be tailored to describe femtosecond laser pulses. In addi
they lead to closed-form solutions for the isodiffracting pu
in terms of elementary functions. We find that pulses w
such spectra obey a simple scaling law that permits e
calculation of such quantities as pulse width, peak frequen
bandwidth, and number of oscillation cycles at any point
space given those quantities at some other point. We
elucidate the role of the Gouy shift of finite beams in det
mining the absolute phase of an isodiffracting pulse. By
solute phase we refer to the phase of the carrier wave rela
to the envelope. For recirculating pulses in a curved mir
cavity, we show that the Gouy shift causes the temporal p
file of the transmitted pulses to vary from pulse to pulse in
quasiperiodic manner. These results are especially impor
for the generation and control of few-cycle mode locked
ser pulses.

II. MODELING OF ULTRASHORT PULSES

The pulsed Gaussian beams~PGB! are exact solutions o
the time-domain paraxial wave equation@6#,

H ¹'
2 2

2

c

]

]t8

]

]zJ E~r ,t8!50, ~2.1!

where ¹'
2 operates on transverse coordinates, andt85t

2z/c is the local time. This equation can be obtained fro
an inverse Fourier transform of the frequency-dom
paraxial wave equation

H ¹'
2 12ik

]

]zJ Ẽ~r ,v!50 ~2.2!

with respect to the local timet85t2z/c, wherek5v/c. In
the single-cycle regime the pulse longitudinal spatial ext
ctp ~wheretp is the pulse width! is of orderlp ~the peak
wavelength!. Since the paraxial approximation holds when
862 ©2000 The American Physical Society
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FIG. 1. Typical spectrum~in
frequency and wavelength! used
in the subsequent plots. The spe
tral range is referred to the typica
spectrum of few-cycle mode
locked Ti:sapphire laser pulses
Here f 050.2 fs21 andt055 fs.
n

e
k

xi

pl

in
c
r

n

om
d
to
th

de
or

as

hat
the
ll

w-
n-
re-

-

lify
ng
at
es

lses.
uent
o a
la-

e-
beam’s Rayleigh lengthzR is much greater thanlp , for
single-cycle pulsed beams we requirectp!zR . This condi-
tion can also be obtained by taking the inverse Fourier tra
form of the paraxial condition u]2Ẽ(r ,v)/]z2u
!uv/c]Ẽ(r ,v)/]zu, with respect to the local timet85t
2z/c, resulting in

U]2E~r ,t8!

]z2 U!U1c ]2E~r ,t8!

]z]t8
U. ~2.3!

Since

U]E~r ,t8!

]t8
U;UE~r ,t8!

tp
U

and

U]E~r ,t8!

]z U;UE~r ,t8!

zR
U,

Eq. ~2.3! yieldsctp!zR as the paraxial condition in the tim
domain. Moreover, in the paraxial regime the pulse loo
like a ‘‘pancake,’’ i.e.,ctp!2w ~wherew is the transverse
radius of the pulse!, since the diffraction anglelp/2w!1.

The fundamental Gaussian beam solution of the para
wave equation is given by@9#

C~r ,v!5
1

z2 izR
expS ikr2

2~z2 izR! D , ~2.4!

wherezR is the Rayleigh range, andr25x21y2. An isodif-
fracting pulsed Gaussian beam can be obtained by multi
ing this solution by any square integrable spectrumF̃(v)
and transforming back to the time domain. The result
pulse is isodiffracting in the sense that all the frequen
components have the same Rayleigh range. The Fou
components of the field are described by

Ẽ~r ,v!5
F̃~v!

z2 izR
expS ikr2

2~z2 izR! D , for v.0. ~2.5!

The details of the pulse spatiotemporal evolution will depe
on the particular choice of spectrumF̃(v). Here we choose
spectra of the formvp exp(2vt0) (v>0), wherep(>1)
andt0(.0) are real constants that can be determined fr
the peak frequency and bandwidth of the pulse. To mo
femtosecond laser pulses we include a low-frequency cu
v0 below which the spectral amplitude is zero. In lasers
s-
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low-frequency cutoff is determined by factors that inclu
the bandwidth of the gain medium, cavity geometry, mirr
bandwidth, and finite apertures. We thus take the spectrum

F̃p~v!52 i
pA0

G~p11!
~v2v0!p

3exp@2~v2v0!t0#u~v2v0!, ~2.6!

whereu(v2v0) is a unit step function andA0 is a constant.
G~ ! is the gamma function. The step function ensures t
there are no negative frequency components. This makes
time domain complex field an analytic function that is we
behaved for all time and at all points in space. The lo
frequency cutoffv0 is a positive parameter that can be ide
tified as the carrier frequency of the pulse. The peak f
quency of the pulse is given byvp5v01p/t0 , where the
term p/t0 marks the location of the maximum of the un
shifted spectrumvp exp(2vt0). The form of the coefficient
in front of the above spectrum is chosen in order to simp
the final form of the time domain expressions. By varyi
v0 , t0 , andp, Eq. ~2.6! can be used to describe pulses th
vary from a single cycle to an arbitrary number of cycl
with any low-frequency cutoff. In this paper we use Eq.~2.6!
to represent both terahertz and mode-locked laser pu
Figure 1 shows a typical spectrum used in the subseq
plots in this paper. The wavelength range is referred t
typical spectrum for few-cycle mode-locked Ti:sapphire
ser pulses.

The inverse Fourier transform of the electric field is d
fined by

E~r ,t !5
1

2p E
2`

1`

Ẽ~r ,v!exp~2 ivt1 ikz!dv, ~2.7!

wherek5v/c. The analytic signal corresponding toE(r ,t)
is obtained by a one-sided inverse Fourier transform

E1~r ,t !5
1

p E
0

1`

Ẽ~r ,v!exp~2 ivt1 ikz!dv, Im t,0.

~2.8!

The real field is obtained fromE(r ,t)5Re$E1(r ,t)%. Substi-
tuting Eq. ~2.6! into Eq. ~2.5!, and then into Eq.~2.8!, one
obtains a family of analytic functions,

Ep
1~r ,t !5

Ap~T,r !exp@2 if~z!#

Az21zR
2

exp@2 iv0t2r2/w2~z!#,

~2.9!
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864 PRE 61SIMIN FENG AND HERBERT G. WINFUL
where the Gaussian beam size,w2(z)5(2czR /v0)$1
1(z/zR)2%, is evaluated at the carrier frequencyv0 . The
Gouy phase shift isf(z)5tan21(z/zR). The complex function
Ap(T,r ) is given by

Ap~T,r !5
A0 exp@2 iap~T!#

~11T2!~p11!/2hp11~r !tp11 ,

ap~T!5~p11!tan21~T!, ~2.10!

whereT is a dimensionless scaled local time~SLT!. Its gen-
eral form is

T~r ,t ![
t~r ,t !

t0h~r !
5

t2
1

c H z1
r2

2R~z!J
t0H 11

r2

a2~z!J
, ~2.11!

wheret(r ,t) is a radially dependent local time, defined b

t~r ,t ![t2
1

c H z1
r2

2R~z!J . ~2.12!

HereR(z)5z$11(zR /z)2% is the radius of curvature of th
wavefront. It will be seen thatt0 yields the on-axis pulse
width that is invariant upon propagation.h(r ) is a spatially
dependent scaling parameter that scales the off-axis p
width, bandwidth, peak, and instantaneous frequencies.
given by

h~r !5H 11
r2

a2~z!J , ~2.13!

where

a2~z!52ct0zRH 11S z

zR
D 2J 5

plp
ozR

p H 11S z

zR
D 2J ,

~2.14!

with lp
o52pct0 /p as the on-axis peak wavelength of th

unshifted envelope spectrum~with v050). The quantity
a(z) represents the radial extent of the pulse envelope. F
Eqs.~2.10! and~2.13!, we see that whenr5a the magnitude
of the envelope decreases by a factor 2p11 compared to the
value on axisr50. Substituting Eq.~2.12! into Eq. ~2.9!, it
is clear that Eq.~2.9! is consistent with the conventiona
envelope-carrier pulse expression, i.e., E(r ,t)
5A(r ,t)exp(2iv0 t1ik0z) in which an infinite plane wave
carrier is modulated by an envelope function. The car
wave in Eq.~2.9!, however, is not a plane wave, but a fini
beam with curved phase fronts. For example, the curva
of the carrier wave is expressed in the radially depend
local time t. This effect is not included in the traditiona
envelope-carrier expression. Equation~2.9! describes highly
localized space-time wavepackets that propagate in
space and maintain their wavepacket structure during pro
gation. They represent a set of focused propagating mode
free space. They are a class of eigen-wavepacket solutio
the time-domain paraxial wave equation with the family
spectra Eq.~2.6!. These eigen-wavepackets evolve contin
ously from single-cycle pulses to multicycle pulses as
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carrier frequencyv0 is varied from zero to values greate
than the pulse bandwidth (v0.1/t0).

Since the imaginary part of Eq.~2.9! is simply related to
the real part by ap/2 phase shift, both real and imagina
parts of Eq.~2.9! describe a family of PGBs with an arbitrar
number of cycles. Whenv050, Eq. ~2.9! reduces to

Ep
1~r ,t !5

Ap~T,r !exp@2 if~z!#

Az21zR
2

. ~2.15!

The real and the imaginary parts of Eq.~2.15! represent a
family of single-cycle pulses. This form of single-cycle pul
for the casep52 was obtained in previous papers by taki
a paraxial approximation of the exact solution of the f
wave Maxwell’s equations.@5,10# The low-frequency cutoff
is zero in the single-cycle pulse. The spatiotemporal evo
tion of single-cycle pulses is purely determined by the co
plex envelope function Eq.~2.15!. Comparing Eqs.~2.9! and
~2.15!, a multicycle isodiffracting pulse is composed of
focused complex envelope and a focused carrier wave w
Gaussian transverse distribution. Figure 2 shows the s
tiotemporal evolution of a multicycle pulse with low
frequency cutoff f 050.3 fs21. The Rayleigh rangezR
550 mm, andp55 for all the figures in this paper. A thor
ough discussion of the physical properties of this family
eigen-wavepackets for the casep52 andv050 was given
in Ref. @5#. Here we generalize the results to multicyc
pulses and point out the spatial temporal structure of th
eigen-wavepackets.

A. Scaling structure

Due to the complexity of the space-time coupling, t
pulse width, frequency, and number of cycles of the
trashort pulses vary from point to point in space, as shown
Fig. 3. In this section we will show that the spatiotempo
structure of these pulses is characterized by the scaling
rameterh(r ), which is related to the spatial variations of th
temporal and frequency information of ultrashort puls
Note that the scaling parameterh(r )5const is a set of hy-
perbolic ray trajectories of a Gaussian beam. On axish(r )
51, and its value increases towards the pulse periphery
using the radially dependent scaled local time that conta
most of the essential features of isodiffracting pulses,
temporal and frequency quantities of these pulses can be
ily predicted at any point in space.

The pulse width can be determined from the amplitu
function Ap(T,r ). As expected, from Eq.~2.10! it is inde-
pendent of the carrier frequency. It is only determined by
envelope spectrum. Using the half-width at 1/e of the maxi-
mum, we find that the pulse width at any point in space
related to that on axis by the scaling parameter through

tp~r !5tp
oh~r !, ~2.16!

where

tp
o5t0A8/p5

A2p

p

lp
o

c
~2.17!
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FIG. 2. Spatiotemporal evolution of a multicycle pulse with a low-frequency cutofff 050.3 fs21 and t0511 fs. The pulse propagate
from the planez52100 mm before the focus, through the focus, then to the planez5100 mm. The plots in the top row are 3D plots, whi
the bottom row are on-axis (r50) temporal profiles corresponding to the top row. The other parametersp55, and the Rayleigh range
zR550 mm for this and subsequent plots.
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is the pulse width on axis (r50,z). In obtaining the expres
sion for tp

o , the approximation exp@2/(p11)#21'2/p was
used~when p51 the error is 14%, whenp52 the error is
only 5%!. The pulse width on axis is independent of t
propagation distancez as the result of the isodiffracting na
ture of the pulse. The parametert0 characterizes the puls
width on axis. The off-axis pulse width is increased by
spatially dependent factorh(r ). Such an increase can b
understood by the diffraction effect due to which the long
wavelengths dominate the off-axis part of the pulses@11,12#.
If the pulse width on axis is known, the pulse width at a
point in space can be obtained from Eq.~2.16!.

For the family of single-cycle pulses given by Eq.~2.15!,
the spatially resolved field amplitude spectrum is given
substituting Eq.~2.6! into Eq. ~2.5! with v050. The combi-
nation of the Gaussian beam size exp@2r2 /w2(z)# with
vp exp(2vt0) yields vp exp@2vt0h(r )#, thus the peak fre-
quency and wavelength of the single-cycle (v050) pulse at
any spatial point are also related to those on axis by
scaling parameter through

vp~r !5
vp

o

h~r !
; lp~r !5lp

oh~r !, ~2.18!

where

vp
o5

p

t0
, lp

o5
2pct0

p
~2.19!
r

y

e

are, respectively, the peak frequency and wavelength of
envelope spectrum on axis (r50,z). For multicycle pulses
described by Eq.~2.9!, the peak frequency is given by

vp~r !5v01
vp

o

h~r !
. ~2.20!

Hence, the spatial variation of the frequency is independ
of the pulse carrier. It is only determined by the spatial var
tion of the complex envelope frequency. The full width ha
maximum~FWHM! bandwidth at any spatial point also sa
isfies the scaling law

DvFWHM~r !5
DvFWHM

o

h~r !
, ~2.21!

whereDvFWHM
o is the FWHM bandwidth on axis. Note tha

h(r )51 on axis. Thus, like the pulse width, the peak fr
quency and the FWHM bandwidth are invariant on axis d
to the isodiffracting nature of the pulse. Off axis those valu
are scaled by the scaling parameterh(r ). As expected, the
time-bandwidth product of these pulses is a constant ev
where in space. It is given by

tp~r !DvFWHM~r !5tp
oDvFWHM

o . ~2.22!

This value is only determined by the envelope spectrum,
not affected by propagation effects.

On the other hand, the pulses have a frequency chirp
is affected by diffraction. It varies spatially. From Eq.~2.9!
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FIG. 3. Temporal waveforms of the pulse at differentz andr. The pulse width, frequency, the number of cycles, and the absolute p
vary from point to point in space. The low-frequency cutofff 050.2 fs21 and t055 fs. The beam waist, located atz50, is w0

'0.15 mm. Note the time delayr2/2R(z) with respect to the pulse on axis in each column.
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the instantaneous frequency can be defined by the deriva
of the phase of the field with respect to time. It is the sum
the carrier frequency and the instantaneous frequency o
complex envelope function,

v i~r ,T!5
]

]t
@v0t1a~T!#5v01

va

~11T2!h~r !
,

~2.23!

where va5(p11)/t05vp
o(p11)/p. Thus, the spatia

variation of the instantaneous frequency and the chirping
fect also come from the complex envelope. Equation~2.23!
shows that the instantaneous frequency is symmetric
chirped about the pulse center (T50). The pulse center ha
a higher frequency than the leading and the trailing edge
can be expected that these pulses will be steepened tow
the trailing edge if they propagate in a medium with norm
dispersion. Figure 4 shows the instantaneous frequency
the temporal waveforms of the pulse with carrier frequen
f 050.2 fs21 for points on axis (h51) and on the character
istic line h52. The scaling nature of these pulses is clea
shown in the plots. The pulse width on the characteristic l
h52 is twice that on axis (h51). After subtracting the
low-frequency cutoff f 050.2 fs21, the instantaneous fre
quency on the characteristic lineh52 is one half the value
on axis.

Equations~2.16!–~2.23! show that these pulses obey
simple scaling law. All the temporal and frequency quantit
are expressed in terms of the scaling parameterh(r ) and the
ive
f
he

f-

ly

It
rds
l
nd
y
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e

s

corresponding axial values which are invariant upon pro
gation. The off-axis values scale ash(r ). The temporal and
frequency quantities are the same for all spatial points
have the same value ofh(r ), i.e., the characteristic line
h(r )5const @which are the hyperbolic raysr2/a2(z)
5const#. For this set of pulsed beams the temporal and f
quency information travels along the characteristic lin
Thus, any physical quantities that depend on time and
quency are also invariant along the characteristic lines.
values of these quantities on different characteristic lines
simply related by the scaling parameter. To understand
scaling structure of these pulses, if one knows the inform
tion at an arbitrary point in space, one can easily predict
information in all of space by applying the scaling para
eter. For single-cycle pulses (v050), if the pulse temporal
profile on axis is known asE(z,t8), wheret85t2z/c, the
temporal profile at any point in space can be obtained sim
by shift and scaling, i.e.,

E~r ,t !5
1

hp11~r !
EH z,

t82
r2

2R~z!c

h~r !
J . ~2.24!

The scaling structure of these pulses is illustrated in F
5, which shows the temporal waveforms along three cha
teristic lines. Along the characteristic lines the pulse is tra
lationally invariant except for the absolute phase induced
the Gouy effect. On the different characteristic lines, t
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FIG. 4. Pulse temporal wave
forms and the instantaneous fre
quencies on two different charac
teristic lines: on axish(r )51
and h(r )52 for a low-frequency
cutoff f 050.2 fs21 and t052 fs.
The instantaneous frequencies a
higher at the centerT50 than
those at the leading and trailin
edges of the pulse. Note the sca
ing character of these pulses. Th
pulse width onh(r )52 is about
twice that on axis. After subtract
ing the low-frequency cutofff 0

50.2 fs21, the instantaneous fre
quency onh(r )52 is one half
that on axis.
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pulse self-scales as the values of the corresponding lines.
local ~radial! time delayr2/2cR(z) along the characteristic
lines is given by (h21)t0z/zR .

It is the same spatially dependent scaling parameterh(r )
which lengthens the pulse width, narrows the bandwidth,
decreases the instantaneous frequencies towards the
periphery. Such a simple scaling structure of these eig

FIG. 5. Temporal waveforms of the pulse along three charac
istics lines. The pulse width, frequency, and the number of cyc
are invariant along the same lines. The waveforms on differ
characteristic lines are related by the scaling parameterh(r ). The
phase differences on the same line come from the Gouy phase
which represents the absolute phase of the pulses. All the field
normalized by their peak values. Note the time reversal property
passing through the waistz50. The time delay increases ash(r )
increases due to the curvature of the converging and diver
phase fronts.g is the ratio of the peak frequency to the bandwid
f 050.1 fs21 andt053 fs.
he

d
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n-

pulses is the result of isodiffraction and the spectra Eq.~2.6!.
The scaling structure is built in the complex envelope, wh
is affected by the focusing geometry and the envelope sp
trum. Note if zR→`, then h(r )→1, and R(z)→`; thus,
there will be neither scaling nor curvature.

B. Ripples

One of the results of the spatial variations of the insta
taneous frequency and the bandwidth is the possibility
developing ripples at the leading and trailing edges of
pulses towards the pulse periphery. The consequence of
is that a single-cycle pulse may self-transform gradually i
a multiple-cycle pulse along the radial direction. This situ
tion can occur when the peak frequency and bandwidth
the spectrum change at different rates along the radial di
tion, and can be characterized by the ratio of the peak
quency to the bandwidth. This effect is shown in Fig. 6 f
two different spectra at two values of the scaling parame
Figure 6~a! represents a single-cycle pulse (f 050), while
Fig. 6~b! is for a pulse with the low-frequency cutofff 0
50.1 fs21. The temporal waveforms of these two pulse
while similar on axis@h(r )51#, are quite different off axis
@h(r ).1#. One pulse maintains its single-cycle character
the whole space, while the other develops ripples towards
pulse periphery.

The ratio of the peak frequency to the bandwidth~g! is of
course equal to the ratio of the pulse length to the period
the carrier. This ratio therefore characterizes the approxim
number of cycles in the pulse. In general, the ratio of
peak frequency to the bandwidth is a function of spatial va
ables since the peak frequency and bandwidth change
tially. When the value ofg is less than 1, the pulse reveals
single-cycle character. When the value ofg exceeds 1, the
original single-cycle pulse will develop new cycles of sm

r-
s
t

ift,
re
n

g
.
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868 PRE 61SIMIN FENG AND HERBERT G. WINFUL
FIG. 6. ~a! Temporal wave-
forms and spectra on and off axis
The low-frequency cutofff 050
and t053 fs. Even though the
peak frequency and the bandwidt
vary in the space, their ratio is in
variant when f 050. Thus, the
pulse maintains its single-cycle
character everywhere in the spac
~b! Temporal waveforms and
spectra on and off axis. The low
frequency cutofff 050.1 fs21 and
t053 fs. The temporal waveform
on axis (h51) is similar to that in
~a!; however, the off axis wave-
forms are different due to the dif
ferent low-frequency cutoff. The
pulse develops more ripples to
wards the pulse periphery. Th
peak frequency and bandwidth, a
well as their ratio, vary in the
space. The value ofg, and hence
the number of cycles increase a
one moves away from the axis.
Th
he
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a
a
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amplitude at the leading and trailing edges of the pulse.
higher the value ofg, the more cycles the pulse has. T
value of g characterizes the number of cycles and the tr
sition from single to multiple cycles. In Figs. 6~a! and 6~b!,
even though the spectral shapes and bandwidths are ex
the same everywhere in space, their peak frequencies
different because of the different values of the low-frequen
cutoff v0 . This leads to different values ofg for the two
cases. The spatial variation of the ratio of the peak freque
e

-

ctly
re

y

cy

to the bandwidth can be obtained from Eqs.~2.20! and
~2.21!, and is given by

g~r !5
vp

o1v0h~r !

DvFWHM
o . ~2.25!

The values ofg are listed in Fig. 6. When the low-frequenc
cutoff v050, g is invariant in space even though the pe
frequency and bandwidth change spatially. This expla
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FIG. 7. Gouy phase shift is the
source of the absolute phase of th
ultrashort pulses propagating in
dispersionless medium. The le
upper plot is the spectral intensit
of a two-cycle pulse. The othe
three plots show how the carrie
wave of this pulse slides under
neath the envelope on passin
through the waist (z50), as a re-
sult of the phase and envelope v
locity mismatch due to the Gouy
phase shift. The dashed lines re
resent the time-averaged intensit
while the solid lines are the under
lying oscillations. In the plotf 0

50.15 fs21 andt054 fs.
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why the pulse withv050 @Fig. 6~a!# maintains its single-
cycle character everywhere in space. On the other h
when the low-frequency cutoffv0Þ0, the ratio of the peak
frequency to the bandwidth will vary in space. Thus, t
pulse will develop ripples off axis, as shown in Fig. 6~b!.
The number of cycles is conserved along the character
lines @h(r )5const#.

C. Absolute phase

The phase of these pulses in the time domain is given
the complex exponential part@exp(ic)# of Eq. ~2.9!. That is,

c~r ,t !52v0t2ap~T!2f~z!, ~2.26!

where the definitions ofT andt are given by Eqs.~2.11! and
~2.12!, respectively. The first termv0t represents the fast~if
v0@DvFWHM) oscillation due to the carrier. The secon
term ap(T) represents the slow modulation due to the fin
bandwidth. The Gouy phase shiftf(z) is the only term that
is independent of the spectrum. It is the Gouy phase shift
causes the carrier to slide underneath the envelope du
propagation. This is shown in Fig. 7, which plots the sp
trum of the pulse, the pulse intensity envelopeuApu2 ~equal to
the time-averaged intensity!, and the underlying oscillation
of a femtosecond pulse at three propagation distances.
difference between the phase and envelope velocities is
to the Gouy effect. This absolute phase due to the Gouy s
has implications for recirculating pulses in a curved mir
resonator such as a mode-locked laser cavity. Even in
absence of intracavity dispersive or nonlinear elements
accumulated Gouy phase shift causes the absolute pha
be different for successive pulses. This results in a pu
shape instability in which the output temporal profile var
from pulse to pulse. For example, consider a symmetric re
nator with mirrors of radius of curvatureR spaced by a dis-
d,

tic

y

at
ng
-

he
ue
ift
r
he
e
to

e

o-

tanceL. The cavity forces all the frequency components
the pulse to have the same Rayleigh range given by@9#

zR5
AL~2R2L !

2
. ~2.27!

Since the waist of the pulsed beam is located at the ca
center (z50), in one round trip the Gouy shift is

fRT54 tan21A L

2R2L
. ~2.28!

After thenth round trip the accumulated Gouy shift isnfRT .
Figure 8 shows the pulse profiles for the intensity envelo
and the underlying oscillation of successive two-cycle pul
in a cavity withR5200 mm andL5182 mm. The absolute
phase, and hence the temporal profile, are different after e
round trip inside the cavity.

D. Gouy shift, Hilbert transform, and time derivative

As shown quite generally by Heyman@6# and confirmed
by us for our specific isodiffracting pulses@5#, these eigen-
wave packets undergo a Hilbert transform along hyperb
trajectories as they propagate from the beam waist to the
field. For two points (z50,r1) and (z5z2 ,r2) that do not
necessarily lie on the same hyperbolic trajectory~i.e., differ-
ent pulse widths!, the temporal waveforms are related by
scaled Hilbert transform which, for the single-cycle pulse
Eq. ~2.15!, is given by

Re$Ep
1~z2 ,r2 ,t2!%5

Sp11

dp
PE

2`

1` Re$Ep
1~0,r1 ,t8!%

St22t8
dt8,

~2.29!



-

r

e
-

n-

.

870 PRE 61SIMIN FENG AND HERBERT G. WINFUL
FIG. 8. Profiles of the intensity
envelope~a time-averaged inten
sity! and the underlying oscilla-
tion of a recirculating two-cycle
pulse inside a symmetric lase
cavity ~radii of mirrors R
5200 mm and separationL
5182 mm). The absolute phas
and temporal waveform are differ
ent from pulse to pulse. The
dashed lines represent the inte
sity envelope, while the solid lines
are the underlying oscillations
Here, f 050.2 fs21 andt052 fs.
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Im$Ep
1~z2 ,r2 ,t2!%52

Sp11

dp
PE

2`

1` Im$Ep
1~0,r1 ,t8!%

St22t8
dt8,

where

t25t2
1

c H z21
r2

2

2R~z2!J . ~2.30!

Here the relative scaling parameterS5h(0,r1)/h(z2 ,r2)
depends on the coordinates of these two points.d
5A11(z2 /zR)2, and P stands for the principal value of th
integral. For points on the same hyperbolic trajectory,S
51, and thus Eq.~2.29! reduces to the Hilbert transform.

For any initial field spectrumŨ0(x0 ,y0 ,v) the field at
any planez in the paraxial approximation is given by th
Kirchhoff diffraction integral

Ũ~x,y,z,v!5
2 iv

2pcz
**sŨ0~x0 ,y0 ,v!

3expH ikz1 ik
~x2x0!21~y2y0!2

2z J dS,

~2.31!

wherek5v/c and the factor2 iv implies a time derivative
of the result of the above spatial integration. In particul
suppose the initial field is the isodiffracting solution of E
~2.5! evaluated atz50,
,

Ũ0~x0 ,y0,v!5
i

zR
expH 2

k~x0
21y0

2!

2zR
J F̃~v!. ~2.32!

Sincek5v/c this initial field is not separable into a functio
of v and a function of (x0 ,y0). Upon substituting this field
in the Kirchhoff integral, the axial field is found to be

Ũ~0,0,z,v!5
F̃~v!exp~ ikz!

z2 izR
, ~2.33!

where the phase of the factor (z2 izR)21 is the Gouy shift.
The spatial integration introduced a factorv21 which can-
cels the time derivative operator in Eq.~2.31!. In the far zone
(z→`) the relation between the diffracted field and the in
tial field is

Ũ~0,0,z→`,v!'2 i
zR

z
Ũ~0,0,z50,v!exp~ ikz!,

for v.0. ~2.34!

The factor of2 i in the above expression gives rise to t
Hilbert transform relationship between far field and ne
field temporal profiles.

Since the pulse solution Eq.~2.9! is an analytic signal, its
real and imaginary parts at any pointr are temporal Hilbert
transforms of each other. In addition they obey certain spa
time symmetries also noted by Kaplan@11#,

Im$Ep
1~2z,r,2t !%52Im$Ep

1~z,r,t !%, ~2.35!
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FIG. 9. Temporal waveforms
of two-cycle pulses of real~left!
and imaginary~right! solutions at
equal distances on both sides
the waist. The imaginary solution
which is antisymmetric at the
waist, experiences both time an
polarity reversals in passing
through the waist. However, only
a time reversal can be seen in th
real solution, which is symmetric
at the waist. Both time and polar
ity reversals are the effects of
phase shift. The carrier frequenc
f 050.2 fs21 andt053 fs.
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Re$Ep
1~2z,r,2t !%5Re$Ep

1~z,r,t !%.

The imaginary part is antisymmetric, while the real part
symmetric under simultaneous reversal oft andz. In passing
through the beam waist the antisymmetric pulse atz50 ex-
periences both time and polarity reversals, while the sy
metric pulse only experiences a time reversal. These pro
ties can be seen from Fig. 9.

The critical condition to observe the time reversal is th
the pulse shape at the beam waist should be either symm
or antisymmetric, i.e., the initial phase~absolute phase! at the
beam waist is either zero orp/2. Since the focal plane is
symmetry plane of the propagation, the symmetry prope
requires that the same event should occur whether the p
propagates from the focal plane to the right or to the left.
Fig. 10~a!, if the right-hand side of the pulse becomes mo
negative while propagating from the focal plane to pointB,
the symmetric pulse shape on the focal plane implies that
left-hand side of the pulse should become more negativ
propagating from the focal plane to pointA. Since propaga-
tion to the left and to the right are time-reversed versions
each other, the fields at pointA and pointB are time re-
versed. Similarly, in Fig. 10~b!, if the field at pointB has a
positive polarity with a lower left lobe, the antisymmetr
pulse shape on the focal plane implies that the field at p
A should have a negative polarity with a higher right lobe
a logically self-consistent result. In this case both time a
polarity reversals can be seen from Fig. 10~b!.

E. Diffraction and pulse energy

For ultrashort pulses the beam size generally depend
both the carrier frequency and the pulse bandwidth@4#. This
-
r-

t
tric

ty
lse
n
e

e
in

f

nt
r
d

on

can be seen from the transverse dependence of the magn
of the wave packet solution in Eq.~2.9!,

F11
r2

a2~z!G
2~p11!

exp@2r2/w2~z!#. ~2.36!

The two factors above determine the contributions of
pulse bandwidth and carrier frequency to the spot size. At
waist of the pulsed beam (z50) the pulse bandwidth (1/t0)
characterizes the transverse extent of the envelope,a0

2

FIG. 10. Spatial symmetry of the Gaussian beam geometry
plains the time and the polarity reversals when an isodiffract
pulse passes through the waist. The focal plane is a symmetry p
of the isodiffracting PGB.



e peak

sponding
s with the
ransverse

872 PRE 61SIMIN FENG AND HERBERT G. WINFUL
FIG. 11. Effect of the bandwidth spatial confinement. The left two plots are the spectral intensity of two pulses with the sam
frequency, but different bandwidths.f 050.34 fs21 and t0514.5 fs for the top spectrum, whilef 050.1 fs21 and t052.7 fs for the bottom
one. The middle two plots are the corresponding electric fields. The right two plots show the evolutions of the beam size of the corre
two pulses. The beam sizes in the plot are defined by one-tenth of the values on axis. The beam sizes of the two ultrashort pulse
same peak wavelength, but the different bandwidths are significantly different. Keeping the peak frequency unchanged, the t
dimension of the pulse can be reduced by increasing the bandwidth to the order of the peak frequency.
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52ct0zR. The carrier frequency in turn characterizes t
transverse dimension of the carrier,w0

252czR /v0 . For a
single-cycle pulse (v050), only the first factor in Eq.~2.36!
contributes to the beam size, which decreases with increa
bandwidth as higher frequencies begin to dominate the s
trum. At the other extreme, for quasimonochromatic pul
(v0@1/t0), only the exponential factor makes a significa
contribution to the beam sizew2(z), which evolves in the
same manner as a monochromatic Gaussian beam. M
over, Eq.~2.36! implies one can confine the transverse ext
of ultrashort pulses along the propagation axis by increas
the bandwidth~keeping the peak frequency unchanged! up to
the order of the peak frequency. This effect of the bandwi
spatial confinement is shown in Fig. 11 in which two puls
have the same peak frequency, but different bandwidths.
beam sizes are significantly different.

The pulse intensity and pulse energy diffract differen
for ultrashort pulses@13,14#. The diffraction of the entire
pulse is easy to characterize by diffraction of the pulse
ergy. Using the method described in Ref.@5# the diffraction
of the pulse energy of the family of single-cycle pulses giv
by Eq. ~2.15! is characterized by

G~r !}
1

~z21zR
2 !

1

H 11
r2

a2~z!J 2p11 5
1

~z21zR
2 !

1

h2p11~r !
.

~2.37!
ng
c-
s
t

re-
t
g

h
s
he

-

n

Equation~2.37! describes the energy density on transve
planes at different propagation distances. It shows that
energy is invariant along characteristic lines. Its space tra
tory depicts the diffraction of the pulse energy. Thus, E
~2.37! can be used to find the radial extent of the pulse
ergy on any transverse plane. We use the Gaussian crite
to characterize the width of the energy distribution of t
pulse,

G~z,r!

G~z,0!
5

1

H 11
r2

a2~z!J 2p11 5S 1

eD 2

. ~2.38!

Using the approximation exp@2/(2p11)#21'1/p ~when p
51 the error is 5%, and whenp52 the error is only 1%!,
one finds that the diffraction of the pulse energy resemb
that of a monochromatic Gaussian beam of effective wa
length equal the peak wavelength of the envelope spectr
The radius of the energy distribution evolves as

w2~z!5we
2H 11S z

zR
D 2J 5

a2~z!

p
, ~2.39!

wherea2(z) is given by Eq.~2.14!, and

we
25

lp
ozR

p
. ~2.40!
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A useful result for isodiffracting single-cycle pulses
that the width of the energy distribution and the pulse wid
are related. This is not true for multiple-cycle pulses who
beam size is determined by the diffraction of both carrier a
envelope. Eliminatinglp

o from Eqs. ~2.17! and ~2.40!, one
obtains

tp
o5A2p

we
2

czR
. ~2.41!

Therefore, by measuring the beam waist of the distribut
of the pulse energy and the Rayleigh range, one can ea
obtain the on-axis pulse width of isodiffracting single-cyc
pulses with the use of Eq.~2.41!.

III. CONCLUSIONS

In summary, we have presented an analysis of the s
tiotemporal evolution of ultrashort pulses within the parax
beam approximation. For the set of spectra given in Sec
certain simple scaling laws permit a deep qualitative und
.
di

pl

a

m

e
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ily
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II,
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standing of the spatial variations of the pulse width, ban
width, and instantaneous frequency. For pulses evolving
cavity, we find that the absolute phase of the circulat
pulses varies in each round trip due to the Gouy phase s
which is determined by the cavity geometry. We have a
shown that the ability of a pulse to retain its single-cyc
character in the whole space depends on the spatial varia
of the spectrum. The pulse spectrum~peak frequency and
bandwidth! and its spatial variation set a limit on the numb
of cycles of an ultrashort pulse generated in experime
The analysis is applicable to isodiffracting pulsed Gauss
beams such as those produced by a mode-locked laser.
results may be useful in ultrashort pulse communications
well as in the characterization and understanding of terah
pulses and femtosecond optical pulses.
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